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The universal structure of high-curvature regions
of material lines in chaotic flows
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Regions of high curvature of a material line as they evolve in a chaotic flow are
considered. In such a region, the curvature as a function of arclength along the line is
found to have a universal form with the peak curvature the only parameter involved.
The alignment of the principal axes of the strain tensor with respect to the local tang-
ent vector of the curve and the ratio of the two largest finite-time Lyapunov expo-
nents play a key role. Numerical experiments with ABC flow demonstrate the result.

1. Introduction
We consider a passive line element as it evolves under the action of a chaotic flow

and focus on regions of high curvature as they develop. The bending of material lines
is, for example, relevant to the study of geometrical structures in turbulence and in
the study of such structures in the magnetic field produced by a high-Prandtl-number
kinematic dynamo (see e.g. Schekochihin et al. 2001).

In general, a differential element along the line will have a non-zero component
aligned with the principal axis of maximum strain at some later time and will be
stretched accordingly. At exceptional points along the line, the differential element
will be orthogonal to the axis of maximum strain. It is at these points where the
curvature may have a local maximum (Leonard 2005). The object of this paper is to
determine the curvature as a function of arclength in the vicinity of these points of
maximum curvature.

Indeed it has been observed in earlier studies that there is an anticorrelation of high
curvature with stretch (Drummond & Münch 1991; Hobbs & Muzzio 1998). In his
study of line evolution in two-dimensional model flows, Thiffeault (2004) determined
that, in fact, there is a −1/3 power law relation between the magnitude of the stretch,
η, and the curvature, κ , in regions of high curvature, i.e. κη3 ≈ const. and he offered a
theoretical explanation of this result. Leonard (2005) confirmed Thiffeault’s result for
three-dimensional line elements evolving in ABC flow and proposed an explanation
based on the local alignment of the principal axes of strain with the tangent vector of
the line. These considerations make up the starting point of the present investigation.

2. Kinematics of passive line elements
Consider the evolution of a material line or space curve X(q, t) parameterized by

a material coordinate q as it evolves in the velocity field u(x, t). Thus,

∂ X
∂t

= u(X, t) (2.1)
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for all q . The tangent vector ∂ X/∂q = �(q, t) satisfies

∂�

∂t
=

∂u
∂xj

�j , (2.2)

where the velocity gradient tensor ∂u/∂xj is evaluated at the location X(q, t).
If q is an arclength parameter at t = 0, then |�(q, 0)| = 1 and

η = |�(q, t)| (2.3)

is the local stretch of the curve at material point q . Let �′ = ∂�/∂q . Then the curvature
κ of the space curve at q is given by

κ =
|� × �′|

|�|3 . (2.4)

3. Properties of Lagrangian chaos
Our objective is to characterize portions of the curve that have high curvature.

For a velocity field that produces chaotic advection, the vector �, satisfying (2.2),
will in general experience exponential growth. We will require the deformation of the
material surrounding particle q accumulated since time t = 0. Thus, if F(q, t) is the
deformation tensor of interest then

∂F

∂t
= UF (F(q, 0) = I), (3.1)

where Uij = ∂ui/∂xj , and � may be expressed as

�(q, t) = F�(q, 0). (3.2)

Let F have the polar decomposition

F = R2V, (3.3)

where R2 is a rotation matrix and V is positive-definite and is diagonalized by a
rotation matrix R1 as follows:

RT
1 VR1 = eλt =

⎡
⎢⎣

eλ1t 0 0

0 eλ2t 0

0 0 eλ3t

⎤
⎥⎦, (3.4)

defining the finite-time Lyapunov exponents,

λi = λi(X(q, 0), t), (3.5)

ordered so that

λ1 � λ2 � λ3. (3.6)

Incompressibility (Ui,i = 0) yields the relation

λ1 + λ2 + λ3 = 0. (3.7)

Note that, in general, |�| = η will increase as eλ1t . However, there may be exceptional
points, say q = q0 where |�| will increase as eλ2t . These points will be of particular
interest to us.
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Figure 1. Deformation of the space curve X(q, t) producing a region of high curvature.
The tangent to the curve at q = q0 is orthogonal to v1.

4. Application to material lines
Here we follow closely Leonard (2005). Using the decomposition of F ((3.3) and

(3.4)), we can express � as follows:

� =
∑

i

eλi t aivi , (4.1)

where vi(i = 1, 2, 3) are the orthonormal column vectors of R2R1.
In general, the right-hand side of (4.1) will be, as mentioned above, dominated by

the term i = 1. However, now consider � as it varies along the space curve near a zero
of a1 at q = q0. Note that

�(q, t) = R2R1 eλtRT
1 �(q, 0). (4.2)

We consider four contributions to ∂�/∂q at q = q0 corresponding to the partial

derivatives of R2R1, e
λt , RT

1 and �(q, 0), respectively. For our purposes, it is important
to determine how these partial derivatives behave in terms of the factors eλi t .
Fortunately, the asymptotic (in time) behaviour of the first three derivatives has
been determined by Thiffeault (2002). The fourth derivative is just proportional to
the curvature times the principal normal at t =0. Using § 4 of Thiffeault (2002), we
find that for λ1 > 2λ2,

�(q, t) = [(â1 + ε̂1)(q − q0)]e
λ1tv1 + [a2 + (â2 + ε̂2)(q − q0)]e

λ2tv2

+ [a3 + â3(q − q0)] e−(λ1+λ2)tv3 + O((q − q0)
2), (4.3)

where â1 =O(1), â2 = O(max(1, eλ2t )), â3 = O(max(1, e(λ1+3λ2)t )), ε̂1 = O(e2λ2t ) and ε̂2 =
O(max(e−2(λ1+2λ2)t , e−(λ1+λ2)t )).

Keeping the leading order terms, we see that

� ≈ â1(q − q0)e
λ1tv1 + a2e

λ2tv2 (4.4)

and

|�|2 ≈ â2
1(q − q0)

2e2λ1t + a2
2e

2λ2t . (4.5)

Note that |�| is O(eλ1t ) away from the zero q0 but only O(eλ2t ) at the zero – a dramatic
change. A sketch depicting the deformation is shown in figure 1. A similar diagram
was used by Schekochihin et al. (2004) in their study of folded structures of magnetic
field lines in a turbulent flow. Note also that

|� × �′| ≈ |â1a2|e(λ1+λ2)t , (4.6)
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so that from (2.4) the peak value of κ = κp may be computed as

κp ≈
∣∣∣∣
â1

a2
2

∣∣∣∣e(λ1−2λ2)t . (4.7)

As noted, the above results (4.3)–(4.7) are valid for λ1 > 2λ2. For λ1 < 2λ2, we find,
in general, that κp =O(1). Perhaps it is worthwhile to note that some vortex models
of inertial range turbulence also depend on λ2/λ1 (see e.g. Gilbert 1993; Leonard
2002).

5. Universal structure
In this section we derive an expression for the curvature distribution in the

neighbourhood of a region of high curvature, which we shall henceforth denote
by κ̂ . In terms of the parameter r = (q − q0)a2e

λ2t we have, using (2.4), (4.5) and (4.6),

κ̂(r) =
κp(

κ2
pr2 + 1

)3/2
, (5.1)

with ∣∣∣∣
∂ X
∂r

∣∣∣∣ =
ds

dr
=

√
κ2

pr2 + 1. (5.2)

An expression for the function κ̂ in terms of the arclength s as measured from the
point of peak curvature follows almost immediately. Letting κpr = r̂ and integrating
(5.2) we find,

κps = F (r̂) = 1
2
[r̂

√
r̂2 + 1 + log(r̂ +

√
r̂2 + 1)]. (5.3)

Thus a universal form for κ(s), depending only on a single parameter κp , is determined
to be

κ̂(s) =
κp

([F −1(κps)]2 + 1)3/2
. (5.4)

For small κps we find that

[F −1(κps)]2 = (κps)2 − 1
6
(κps)4 + 11

45
(κps)6 + O((κps)8)), (5.5)

and for large κps,

[F −1(κps)]2 = 2κps − 1
2
(log(8κps) + 1) + O((log(κps))2/κps). (5.6)

In the above development we have assumed that (4.5) and (4.6) hold in terms of q ,
the arclength parameter at t = 0. However, it should be pointed out that it is sufficient
that there exists a particular parameterization of the space curve such that (4.5) and
(4.6) are valid. In fact any region of the curve that is locally parabolic will satisfy the
universal form. See the discussion at the end of the next section.

6. Numerical experiments – ABC flow
As in our previous study (Leonard 2005) we use ABC flow (see e.g. Dombre et al.

1986) for our numerical experiments. If u = (u, v, w) then

u(x, y, z) = B cos(y) + C sin(z),

v(x, y, z) = A sin(x) + C cos(z),

w(x, y, z) = A cos(x) + B sin(y).

⎫⎪⎬
⎪⎭

(6.1)
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Figure 2. Error in κp versus spacing between points for the case κp ≈ 40 (symbols);
line has slope = 1.86.

We chose A= 5 and B =C = 2. This particular flow has no stagnation points but
is known to produce extensive regions of chaotic particle motion and a Lyapunov
exponent that is a maximum for the family of flows satisfying B/A= C/A (Galanti,
Sulem & Pouquet 1992; Galloway & O’Brian 1993).

The material line is initialized at t =0 as a circle of radius R with a certain
location and orientation and is discretized with N0 equally spaced points. These
points are moved according to (6.1) using third-order Runge–Kutta time integration
with �t = 0.01/

√
A2 + B2 + C2. Every nr time steps, we remesh the curve using cubic

spline interpolation such that consecutive knot points are equidistant with a distance
equal to the separation at t = 0. Use of cubic splines allows us to compute � and
�′ with reasonable accuracy. We also use cubic splines to interpolate the stretch
distribution along the curve, as this information must also be passed on to the new
mesh.

For the following computations we used N0 = 6000, nr = 10, and the initial circle
was in the z = 0 plane, centred at x = y =0, and had a radius R = 2. The curve
was evolved till T ≈ 2.08 corresponding to 1197 time steps. The final number of
points representing the curve is approximately 72 000. Runs were also performed at
N0 = 2n × 750 for n= 0, 1 and 2 to assure spatial convergence of the results. Figure 2
shows the convergence of the value of peak curvature for the high-curvature region
shown in figure 5(d). Note that the convergence is nearly second-order in the distance
between points along the curve. This is in accordance with the expected second-order
accuracy of ∂2 X/∂s2 when using cubic splines for interpolation. In each case, κp and
the corresponding location sp for a particular value of knot spacing were computed
by using three pairs of (κi, si), taken at the maximum value of κi and the two on
either side, and fitting these data to the expression (5.4) with s replaced by s − sp .

The curvature distributions are shown in figure 3 for times T/2 and T versus
material coordinate. At t = T there are seven regions of high curvature with κp � 10.
Note that five of the seven high curvatures have developed to the point where κp � 5
at t = T/2. The other two, appearing in 8.5 <q < 9, have relatively small κp values at
t = T/2, even though they have the first and third highest κp values at t = T .
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Figure 3. Curvature versus material coordinate q . (a) t = T/2; (b) t = T ≈ 2.08.
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Figure 4. Curvature versus distance s at t = T: (a) third highest and highest κp;
(b) seventh highest and second highest κp .

In figure 4 we show κ versus distance parameter s for the four high-curvature regions
we will compare with the theory. They correspond approximately to 8.59 <q < 8.93
(4a) and 10.67 < q < 12.26 (4b). Comparisons with theory ((5.4) with s replaced by
s − sp) are shown in figure 5. Note that the agreement is very good, especially for
the regions with the two highest κ ′

ps. Only the knot points are used in the graphics,
both for κ and κ̂ . This is noticeable particularly near the peak for the plots with the
highest κp (figure 5b).

Poincaré maps were constructed for the material points corresponding to the high-
curvature regions shown in figures 4 and 5. They reveal that the line segments
corresponding to (a), (b) and (c) of figure 5 develop high curvature in chaotic zones
of the ABC flow while the high curvature of region (d) develops in a zone of quasi-
periodic orbits. In fact, it is not required that the flow be chaotic for high curvature
to develop. A simple stagnation point flow will yield high curvature on a line that
has non-zero initial curvature. A chaotic flow, however, will continue to produce new
regions of high curvature as the material line is stretched.

In figure 6 we show the normalized difference between the actual curvature
distribution and the theoretical distribution. Note that the differences for first and
second highest peak regions are less than 1 % of the peak values. For the region with
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Figure 5. Curvature versus distance. κ(s) (solid) and κ̂(s − sp) (dashed) at t = T . (a) Third
highest κp; (b) highest κp; (c) seventh highest κp; (d) second highest κp .
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Figure 6. Non-dimensional difference in curvature versus non-dimensional distance for the
regions shown in figure 5 with �κ = κ(s −sp)− κ̂(s): dash-dot, third highest κp; dashed, highest
κp; dotted, seventh highest κp; solid, second highest κp .
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Figure 7. (a) κη3 = |∂ X/∂q × ∂2 X/∂q2| versus q − q0; (b) η2 = |∂ X/∂q|2 versus (q − q0)
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Figure 8. Same as in figure 7 except with q replaced by q∗.

the seventh highest peak (dotted), we need only to consider the domain |κp(s−sp)| � 2
corresponding to the plot for this region in figure 5. With this in mind, the differences
for the remaining two regions are less than 3 % of their respective peak values.

Figure 7 illustrates the point that the material coordinate q , that is also the arclength
parameter at t = 0, may not be optimal for the analysis presented in the previous
section. Note that κη3 = |� × �′| is noticeably not a constant, in the vicinity of the
high-curvature region of figure 5(b), as suggested by (4.6). Similarly, |�|2 is not linear
in (q − q0)

2, i.e. both branches linear with the same slope, as claimed by (4.5). We
found, in fact, that this portion of the curve underwent considerable non-uniform
stretching before the deformation to high curvature took place, and that the simple
transformation, dq∗/dq = 1+3.5(q −q0) to a new parameter q∗ gives much agreement
with (4.5) and (4.6) (see figure 8).

7. Summary and discussion
As a material line X(q, t) with material coordinate q evolves in time in a chaotic

flow, a localized region of high curvature may develop around a point where the
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tangent vector �= ∂ X/∂q is orthogonal to the principal axis of maximum strain. A
necessary condition is that the largest finite-time Lyapunov exponent must exceed
twice the second largest exponent. The strain tensor in question is that corresponding
to the deformation starting at the time of initial development to some later time.

Our main result is that in such a region, the curvature as a function of distance from
the point of peak curvature κp is well approximated by κp times a universal function
of the distance times κp . The function itself is determined by analysis. The results are
confirmed by numerical experiments in which material curves are evolved in ABC
flow. Of course, the chosen ABC flow only has one length scale � and one velocity
scale u, both O(10). Thus the time scale for the development of high curvature, �/u, in
ABC flow is O(1). However, the length scale of the high-curvature region is O(1/κp),
which can be much smaller than and is not directly related to �. In three-dimensional
turbulence, we also expect that the time scale for the development of high curvature
to be O(�/u) or, in this case, O(1/ω), where ω is the r.m.s. vorticity. We again expect
that the length scale of a high-curvature region will not be related to any flow length
scale and has the potential to be smaller than the Kolmogorov length.
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